在画布上绘制六边形,测试鼠标单击事件与六边形

Drawing Hexagon on Canvas, testing mouseclick event vs Hexagon

本文关键字:六边形 鼠标 单击 事件 测试 绘制      更新时间:2023-09-26

>我在画布上绘制一个基于六边形的网格。

每个六边形都是一个对象,用于保存 x/y 坐标中的 6 个点。每个六边形对象还保存其 X/Y 列/行索引。

var canvas = document.getElementById("can");
    canvas.width = 200;
    canvas.height = 200;    
var ctx = canvas.getContext("2d");
var grid = []; // array that holds the Hex
var globalOffset = 30 // not important, just for smoother display atm
  function Point(x, y) {
    this.x = x;
    this.y = y;
  }
  function Hex(x, y, size) {
    this.size = 20;
    this.x = x;
    this.y = y;
    this.points = [];
    this.id = [];
    this.create = function(x, y) {
      var offSetX = (size / 2 * x) * -1
      var offSetY = 0;
      if (x % 2 == 1) {
        offSetY = Math.sqrt(3) / 2 * this.size;
      }
      var center = new Point(
        x * this.size * 2 + offSetX + globalOffset,
        y * Math.sqrt(3) / 2 * this.size * 2 + offSetY + globalOffset
      )
      this.midPoint = center;
      this.id[0] = x;
      this.id[1] = y;
      for (var i = 0; i < 6; i++) {
        var degree = 60 * i;
        var radian = Math.PI / 180 * degree;
        var point = new Point(
          center.x + size * Math.cos(radian),
          center.y + size * Math.sin(radian)
        )
        this.points.push(point);
      }
    }
    this.create(x, y);
  }
}

//Determine where was clicked
canvas.addEventListener("click", function(e) {
  var rect = canvas.getBoundingClientRect();
  var pos = {
    x: e.clientX - rect.left,
    y: e.clientY - rect.top
  }

  document.getElementById("pos").innerHTML = "click on: " + pos.x + " " + pos.y;
});

// Creating Hexagons, setting up their center point, pushing them into Grid.
function init() {
  for (var i = 0; i < 5; i++) {
    for (var j = 0; j < 4; j++) {
      var hex = new Hex(i, j, 20);
      grid.push(hex)
    }
  }
  //for each Hex in Grid, draw the Hex
  for (var hex in grid) {
    var item = grid[hex];
    ctx.beginPath();
    ctx.moveTo(item.points[0].x, item.points[0].y);
    for (var k = 1; k < item.points.length; k++) {
      ctx.lineTo(item.points[k].x, item.points[k].y);
    }
    ctx.closePath();
    ctx.stroke();
    var text = item.id;
    ctx.fillStyle = "black";
    ctx.fillText(text, item.midPoint.x - 7, item.midPoint.y - item.size / 2.2);
  }
单击

画布时,我想确定我是否单击了十六进制,如果单击了十六进制,则单击了哪个十六进制(按列/行)。它的数学问题。

我该怎么做?

这里的完整工作示例:http://codepen.io/anon/pen/RrMzKy?editors=1111

如果将

六边形中心视为圆心,则单击的六边形是中心最接近单击的六边形。 (应该可以在不测试到每个可能单元的距离的情况下对其进行优化)。

为了解释不完全覆盖,假设在可见六边形周围的附加环中有更多的(不可见)六边形。

如果选择了其中一个,或者距离大于圆半径,则单击不是在可见的六边形上。

在某种程度上基于对你自己提出的代码的重构,并避免两个循环,因为唯一的收获是消除了单个sqrt函数:

Grid.prototype.getHexAt = function(pos) {
    var closest = null;
    var min = Infinity;
    grid.hexes.forEach(function(hex) {
        var dx = hex.center.x - pos.x;
        var dy = hex.center.y - pos.y;
        var distance = Math.sqrt(v.x * v.x + v.y * v.y);
        if (distance < hex.size && distance < min) {
            min = distance;
            closest = hex;
        }
    });
    return closest;   // may return null
}

有趣的是,Alnitak的建议相当不错,因为六边形确实是一个圆。这是我的职能。比较鼠标通风口位置 x/y 与每个六边形圆和六边形固有尺寸(宽度/高度)。鼠标位置 x/y + 六边形大小是否接近六边形中心,您可能单击了这个六边形。仍然针对所有六边形进行测试。如果您"接近"多个,请获取鼠标路线 x/y 与所有有效六边形圆的矢量距离。矢量最短的六边形是您单击的六边形。

Grid.prototype.getHexAt = function(pos){
    var inRange = [];
    var closest = null;
    for (var hex in grid.hexes) {
        var item = grid.hexes[hex];     
        var center = item.center;
        if (center.x + item.size > pos.x && center.x - item.size < pos.x) {
            if (center.y + item.size > pos.y && center.y - item.size < pos.y) {
                inRange.push(item);
            }
        }
    }   
    if (inRange.length > 1) {
        var pick = null;
        var dist = null;
        for (var i = 0; i < inRange.length; i++) {
            var vector = {
                x: inRange[i].center.x - pos.x,
                y: inRange[i].center.y - pos.y
            };
            if (vector.x < 0) {
                vector.x *= -1;
            }
            if (vector.y < 0) {
                vector.y *= -1;
            }
            if (pick == null || vector.x + vector.y < dist) {
                pick = inRange[i];
                dist = vector.x + vector.y;             
            }
        }
        closest = pick;
    }
    else {
        closest = inRange[0];
    }
    return closest;
};